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1Outline

▶ Quantum mechanics is usually formulated using the language of state vectors
▶ An alternate formulation, mathematically equivalent, is based on density operators
▶ The density matrix formalism provides a much more convenient language for

thinking about some scenarios
▶ And it can help in reasoning with paradoxes



Formalism
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2Pure states and mixed states

▶ The state of a qubit is a superposition
|ψ⟩ = α|0⟩+ β|1⟩, with α, β ∈ C and
⟨ψ|ψ⟩ = 1, which is not the same as a
probability mixture of states.

▶ Even though the measurement outcome may be
probabilistic, a superposition state can be
known with certainty.

▶ Superposition states are pointwise and they can
in fact be visualized as points on the Bloch
sphere |ψ⟩ = cos θ

2 |1⟩+ eiϕ sin θ
2 |0⟩. They are

called pure states.
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3Pure states and mixed states

▶ Superposition states are pointwise and they can
in fact be visualized as points on the Bloch
sphere. They are called pure states.

▶ In contrast, if we are not sure if a qubit is in one
pure state or another pure state, then the state
itself and not just its outcome is probabilistic.

▶ These are called mixed states, and they can be
visualized as points in the Bloch ball

|0⟩

|1⟩
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4Density Matrices

▶ Density matrices allow probabilistic mixtures of kets
▶ The density matrix language provides a convenient means for describing quantum

systems whose state is not completely known
▶ While a pure state is written using vectors, a mixed state is written using an

operator called a density operator
▶ Since operators can be represented by matrices, often we speak of density matrices
▶ It should be always kept in mind that a density matrix is an operator, not a matrix,

and the matrix for this operator depends on the choice of orthonormal basis
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5Density Matrices

▶ Suppose a quantum system is in one of a number of states |ψi⟩ with respective
probabilities pi

▶ {pi, |ψi⟩} is an ensemble of pure states
▶ The density matrix for the system is defined by the equation

ρ =
∑
i

pi|ψi⟩⟨ψi|
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6Density Matrices

▶ If the evolution of a closed quantum system is described by the unitary operator U ,
the evolution of the density operator is∑

i

piU |ψi⟩⟨ψi|U † = UρU †

▶ Suppose we perform a measurement described by measurement operators Mm
▶ If the initial state was |ψi⟩, then the probability of getting result m is

p(m|i) = ⟨ψi|M†
mMm|ψi⟩ = Tr

(
M†

mMm|ψi⟩⟨ψi|
)

▶ and hence
p(m) =

∑
i

p(m|i)pi = Tr(M†
mMmρ)

▶ The density operator of the system after obtaining the measurement result m is

ρm =
M†

mρMm

Tr
(
M†

mMm|ψi⟩⟨ψi|
)
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7Properties of Density Matrices

▶ Tr(ρ2) ≤ 1

▶ A state is pure if and only if Tr(ρ2) = 1

▶ If a quantum system is prepared in the state ρi with probability pi, the system may
be described by the density matrix ρ =

∑
i piρi

Note
The eigenvalues and eigenvectors of a density matrix have no special significance with
regard to the ensemble of quantum states represented by that density matrix: they just
indicate one of many possible ensembles that may give rise to that specific density
matrix
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8Properties of Density Matrices

▶ An operator ρ is the density operator associated to some ensemble if and only if
▶ Tr(ρ) = 1
▶ ρ is a positive operator, i.e. ⟨ψ|ρ|ψ⟩ ≥ 0 for any arbitrary vector |ψ⟩

▶ This allows to define a density operator as a positive operator having trace one
▶ The density operator representing a state of a system is defined in a unique

manner, whereas the vector representing a pure state is only defined up to within a
phase factor



Possible Applications
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9Interaction-free measurement

|ψ1⟩

D0

D1

|ψ4⟩

|ψ1⟩

D0

D1

|ψ4⟩

▶ In 1993, Elitzur and Vaidman proposed a gedankenexperiment based on a
Mach-Zender interferometer
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10Interaction-free measurement

Suppose the obstacle adsorbs the photon with probability p

Input density operator ρ1 =
(
1 0
0 0

)
Half-silvered mirror operator S = 1√

2

(
1 i
i 1

)
Fully-silvered mirror operator M =

(
0 i
i 0

)
Output density operator ρ4 = 1

2

(
2− p ip
−ip p

)
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11Surprising connections

▶ Quantum structures (e.g., entanglement, indistinguishability, interference, and
superposition) can in principle be applied to other domains, including:
▶ Cognition (influencing human probability and similarity judgments, decision-making,

language, and perception)
▶ Socio-economic domains (behavioral economics and finance, where empirical data

often deviates from classical Boolean and Kolmogorovian frameworks)

▶ Challenging traditional approaches can lead to a deeper understanding of
underlying principles and mechanisms governing complex systems

▶ Quantum theory as an analogy can improve decision theory, even if the brain is not
a quantum system

▶ Quantum interference can account for problematic situations in decision theory,
such as the violation of the law of total probability when two observables are not
compatible
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12Warm-up: Allais paradox (1953)

▶ The Allais paradox comes in several versions
▶ This is one of the simplest, slightly modified
▶ A participants is offered two pairs of gambles:

A1 Receive $1,000 with certainty
A2 Receive $5,000 with probability 0.8, otherwise $0
B1 Receive $10,000 with probability 0.1, otherwise $0
B2 Receive $50,000 with probability 0.08, otherwise $0

▶ and is asked to rank A1 vs. A2 and B1 vs. B2
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13Ellsberg paradox (1961)

▶ A lottery with known probabilities is preferred to a similar but ambiguous lottery,
where the decision maker does not know them

▶ An urn contains 30 balls, 10 of which are red. The other 20 are either black or
yellow in unknown proportions. One ball will be drawn at random from this urn.

▶ A participants is offered two pairs of gambles:
A1 Receive $100 if the ball is red, otherwise $0
A2 Receive $100 if the ball is black, otherwise $0
B1 Receive $100 if the ball is either red or yellow, otherwise $0
B2 Receive $100 if the ball is either black or yellow, otherwise $0

▶ and is asked to rank A1 vs. A2 and B1 vs. B2
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14Ellsberg paradox

▶ Rank A1 vs. A2 and B1 vs. B2

A1 Receive $100 if the ball is red, otherwise $0 (P ($) = 1/3)
A2 Receive $100 if the ball is black, otherwise $0 (P ($) = P (B))
B1 Receive $100 if the ball is either red or yellow, otherwise $0 (P ($) = 1− P (B))
B2 Receive $100 if the ball is either black or yellow, otherwise $0 (P ($) = 2/3)

▶ Ellsberg predicted (and experiments confirmed it) that most people will prefer A1

to A2, but B2 to B1

▶ It is as maybe P (B) < 1/3 is more relevant in the first case, but maybe
P (B) > 1/3 is more relevant in the second

▶ La Mura (2009) applied state vector formalism to this situation
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