In Praise of the Density Matrix Formalism

SID 2024

Ugo Fiore

Department of Computer Science – University of Salerno

Outline

- Quantum mechanics is usually formulated using the language of state vectors
- ► An alternate formulation, mathematically equivalent, is based on density operators
- The density matrix formalism provides a much more convenient language for thinking about some scenarios
- And it can help in reasoning with paradoxes

Formalism

Pure states and mixed states

- The state of a qubit is a superposition $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, with $\alpha, \beta \in \mathbb{C}$ and $\langle \psi | \psi \rangle = 1$, which is not the same as a probability mixture of states.
- Even though the measurement outcome may be probabilistic, a superposition state can be known with certainty.
- Superposition states are pointwise and they can in fact be visualized as points on the Bloch sphere $|\psi\rangle = \cos \frac{\theta}{2}|1\rangle + e^{i\phi} \sin \frac{\theta}{2}|0\rangle$. They are called *pure states*.

Pure states and mixed states

- Superposition states are pointwise and they can in fact be visualized as points on the Bloch sphere. They are called *pure states*.
- In contrast, if we are not sure if a qubit is in one pure state or another pure state, then the state itself and not just its outcome is probabilistic.
- These are called *mixed states*, and they can be visualized as points in the Bloch ball

Density Matrices

- Density matrices allow probabilistic mixtures of kets
- The density matrix language provides a convenient means for describing quantum systems whose state is not completely known
- While a pure state is written using vectors, a mixed state is written using an operator called a density operator
- ▶ Since operators can be represented by matrices, often we speak of density matrices
- It should be always kept in mind that a density matrix is an operator, not a matrix, and the matrix for this operator depends on the choice of orthonormal basis

Density Matrices

- \blacktriangleright Suppose a quantum system is in one of a number of states $|\psi_i\rangle$ with respective probabilities p_i
- $\{p_i, |\psi_i\rangle\}$ is an ensemble of pure states
- ▶ The density matrix for the system is defined by the equation

$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i |$$

Density Matrices

If the evolution of a closed quantum system is described by the unitary operator U, the evolution of the density operator is

$$\sum_{i} p_{i} U |\psi_{i}\rangle \langle \psi_{i} | U^{\dagger} = U \rho U^{\dagger}$$

Suppose we perform a measurement described by measurement operators M_m If the initial state was $|\psi_i\rangle$, then the probability of getting result m is

$$p(m|i) = \langle \psi_i | M_m^{\dagger} M_m | \psi_i \rangle = \operatorname{Tr} \left(M_m^{\dagger} M_m | \psi_i \rangle \langle \psi_i | \right)$$

▶ and hence

$$p(m) = \sum_{i} p(m|i)p_i = \operatorname{Tr}(M_m^{\dagger} M_m \rho)$$

 \blacktriangleright The density operator of the system after obtaining the measurement result m is

$$\rho_m = \frac{M_m^{\dagger} \rho M_m}{\operatorname{Tr} \left(M_m^{\dagger} M_m |\psi_i\rangle \langle \psi_i | \right)}$$

Properties of Density Matrices

- $\blacktriangleright \ {\rm Tr}(\rho^2) \leq 1$
- \blacktriangleright A state is pure if and only if ${\rm Tr}(\rho^2)=1$
- ► If a quantum system is prepared in the state ρ_i with probability p_i , the system may be described by the density matrix $\rho = \sum_i p_i \rho_i$

Note

The eigenvalues and eigenvectors of a density matrix have *no* special significance with regard to the ensemble of quantum states represented by that density matrix: they just indicate one of many possible ensembles that may give rise to that specific density matrix

Properties of Density Matrices

- \blacktriangleright An operator ρ is the density operator associated to some ensemble if and only if
 - $\blacktriangleright \operatorname{Tr}(\rho) = 1$
 - ho is a positive operator, i.e. $\langle \psi | \rho | \psi \rangle \geq 0$ for any arbitrary vector $| \psi \rangle$
- ▶ This allows to *define* a density operator as a positive operator having trace one
- The density operator representing a state of a system is defined in a unique manner, whereas the vector representing a pure state is only defined up to within a phase factor

Possible Applications

 $|\psi_1\rangle$

Interaction-free measurement

 In 1993, Elitzur and Vaidman proposed a gedankenexperiment based on a Mach-Zender interferometer

Interaction-free measurement

Suppose the obstacle adsorbs the photon with probability p

Input density operator $\rho_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ Half-silvered mirror operator $S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$ Fully-silvered mirror operator $M = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ Output density operator $\rho_4 = \frac{1}{2} \begin{pmatrix} 2-p & ip \\ -ip & p \end{pmatrix}$

Surprising connections

- 1
- Quantum structures (e.g., entanglement, indistinguishability, interference, and superposition) can in principle be applied to other domains, including:
 - Cognition (influencing human probability and similarity judgments, decision-making, language, and perception)
 - Socio-economic domains (behavioral economics and finance, where empirical data often deviates from classical Boolean and Kolmogorovian frameworks)
- Challenging traditional approaches can lead to a deeper understanding of underlying principles and mechanisms governing complex systems
- Quantum theory as an analogy can improve decision theory, even if the brain is not a quantum system
- Quantum interference can account for problematic situations in decision theory, such as the violation of the law of total probability when two observables are not compatible

Warm-up: Allais paradox (1953)

- The Allais paradox comes in several versions
- ► This is one of the simplest, slightly modified
- A participants is offered two pairs of gambles:
 - A_1 Receive \$1,000 with certainty
 - A_2 Receive \$5,000 with probability 0.8, otherwise \$0
 - B_1 Receive \$10,000 with probability 0.1, otherwise \$0
 - B_2 Receive \$50,000 with probability 0.08, otherwise \$0
- \blacktriangleright and is asked to rank A_1 vs. A_2 and B_1 vs. B_2

Ellsberg paradox (1961)

- ► A lottery with known probabilities is preferred to a similar but ambiguous lottery, where the decision maker does not know them
- ► An urn contains 30 balls, 10 of which are red. The other 20 are either black or yellow in unknown proportions. One ball will be drawn at random from this urn.
- A participants is offered two pairs of gambles:
 - $A_1\,$ Receive \$100 if the ball is red, otherwise \$0 $\,$
 - $A_2\;$ Receive \$100 if the ball is black, otherwise \$0
 - $B_1\,$ Receive \$100 if the ball is either red or yellow, otherwise \$0
 - $B_2\;$ Receive \$100 if the ball is either black or yellow, otherwise \$0

• and is asked to rank A_1 vs. A_2 and B_1 vs. B_2

Ellsberg paradox

▶ Rank A_1 vs. A_2 and B_1 vs. B_2

- A_1 Receive \$100 if the ball is red, otherwise \$0 (P(\$) = 1/3)
- A_2 Receive \$100 if the ball is black, otherwise \$0 (P(\$) = P(B))
- B_1 Receive \$100 if the ball is either red or yellow, otherwise \$0 (P(\$) = 1 P(B)) B_2 Receive \$100 if the ball is either black or yellow, otherwise \$0 (P(\$) = 2/3)
- Ellsberg predicted (and experiments confirmed it) that most people will prefer A₁ to A₂, but B₂ to B₁
- ▶ It is as maybe P(B) < 1/3 is more relevant in the first case, but maybe P(B) > 1/3 is more relevant in the second
- ► La Mura (2009) applied state vector formalism to this situation

